

# IMPACT Project

# Answering global bacterial multi-resistance with sustainable preventive solutions



### FRAME THE PROBLEM



| Context                                                                                                                                                                                                                                                  | Issue                                                                                                                                                                                                                                                                 | Necessity                                                                                                                                                                                                                                                  | Intention                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bacterial multi-resistance poses a serious threat to healthcare sustainability for the following reasons:  • Treatment failure: higher costs and increased complications  • Safety of surgeries in jeopardy: surgery risks without effective antibiotics | <ul> <li>Bacterial multi-resistance is a public health concern caused by:</li> <li>Overuse of antibiotics in humans and livestock</li> <li>Incomplete treatments leading to resistant strains</li> <li>Environmental antibiotic release through wastewater</li> </ul> | Antimicrobial resistance and a weakening healthcare system impact:  SDG 3: Good Health and Wellbeing  Rising treatment failures threaten health outcomes.  Resistant infections increase mortality and healthcare costs.  SDG 9: Industry, Innovation, and | <ul> <li>intention is to democratize the use of natural aromatic compounds as alternative sustainable solution to reduce antibiotic usage and multiresistance:</li> <li>Cost-effective extraction of potent antibacterial essential oils.</li> <li>Reduces antibiotics in humans,</li> </ul> |
| • Impact on vulnerable populations: elderly, immunocompromised, chronic diseases or patients in healthcare facilities at risk                                                                                                                            | Genetic mutations in bacterial structures                                                                                                                                                                                                                             | <ul> <li>Infrastructure</li> <li>Industry faces pressure for sustainable antibiotic practices.</li> <li>Innovation needed for alternative natural treatments and diagnostics.</li> </ul>                                                                   | <ul> <li>Provides safe, non-resistance methods for prevention and treatment.</li> <li>Lowers contamination of water and natural resources.</li> </ul>                                                                                                                                        |



# **ETHICS involving Natural Aromatic Compounds vs Antibiotics**

#### **Antibiotics Essential Oils Environmental** Lowers contamination of water and Rapid treatment and impact natural resources. recovery **Benefits** Supports sustainable local farming Local economic Healthcare impact (fair-trade practices) growth Supports livestock & Productivity productivity (economic Provides safe, non-resistance benefit but controversial) Lower risk of methods for prevention and resistance treatment. Higher costs of treatments Lack of standardized evaluation and complications: frameworks Antimicrobial Death toll of AMR to reach Insufficient safety and efficacy **Regulatory Gaps** Resistance (AMR) 8M-10 M per year by 2050 data US\$ 1 trillion additional Costs Approval and labelling challenges healthcare costs by 2050 Risks of overharvesting, land Environmental Overuse of antibiotics in Over-prescription degradation, water depletion, humans and livestock impact pollution Environmental Antibiotic release through

impact

wastewater

# **POTENTIAL RISKS of Generalizing the Use of Essential Oils**



#### Several factors should be carefully considered:

**Health Risks** 

- Skin / respiratory irritations (very rare with the selected EO), and allergic reactions
- Toxicity, with incorrect dosage and application (if not properly diluted or ingested, still, very rare)
- Interactions with medications, either enhancing or inhibiting their effects (none with the selected EO)

Environmental Impacts

- Overharvesting risks: overexploitation of flora and fauna, threatening biodiversity
- Land degradation: deforestation, soil erosion, or monocropping.
- Water depletion: significant water resources required for extraction processes
- Pollution: from by-products used for extraction processes (that could eventually alter the quality of the oils)

Ethical Concerns

- Exploitation risks: Communities supplying raw materials could face unfair wages and working
- Transparency: Claims about efficacy could mislead users into substituting antibiotics for essential oils in some inadequate cases (post-surgeries for instance)

### **ADAPTABLE INFRASTRUCTURE for our Solution**



#### Leverage contributing factors

#### **Sustainable and High-Quality Soil Management**

- Regenerative Agriculture: Preserve soil fertility with crop rotation.
- **Precision Farming:** Use AI and IoT for soil monitoring and efficient irrigation.

#### **Good Farming Practices**

- Fair Trade and Ethical Sourcing
- Climate-Resilient Crops

#### **Skilled Labor Development**

• Training Programs, Community Engagement, Technology Integration

#### **Efficient Extraction Process**

- Modular Distillation: Adapt units to seasonal and regional variations.
- Closed-Loop Extraction: Minimize waste.
- Renewable Energy-Powered Distillation: Use solar, biomass, or geothermal energy.

#### Mitigate uncertainties

#### **Climate and Environmental Risk Management**

- **Diversified Sourcing:** Cultivate in multiple climate zones to reduce weather risks (for example: **Lavender** is originally from the Mediterranean but now cultivated in France, Bulgaria, and the US)
- Water Conservation: Use rainwater harvesting and drip irrigation.
- Adaptive Supply Chains: Leverage AI for real-time disruption forecasting and sourcing adjustments.



# Goal & Scope of a LIFE CYCLE ASSESSMENT for our project

#### Goal:

To evaluate and compare the **environmental impact of using essential oils (e.g., Spike Lavender)** vs. traditional **antibiotics**, especially in terms of production, use, and disposal—across healthcare and agricultural applications.

#### Scope:

| Functional Unit   | 1 kg of antibacterial product (essential oil vs. antibiotic) used in wound care or livestock      |  |  |
|-------------------|---------------------------------------------------------------------------------------------------|--|--|
| System Boundaries | Cradle-to-grave: from raw material cultivation to product application and disposal                |  |  |
| Impact Categories | GHG emissions, water use, land use, ecotoxicity, eutrophication, acidification, biodiversity loss |  |  |
| Geographic Scope  | Focus on France, USA, India, Brazil                                                               |  |  |
| Temporal Scope    | Projected impact over 10–20 years for sustainability planning                                     |  |  |
| Target Audience   | Policy makers, healthcare providers, farmers, investors, sustainability experts                   |  |  |

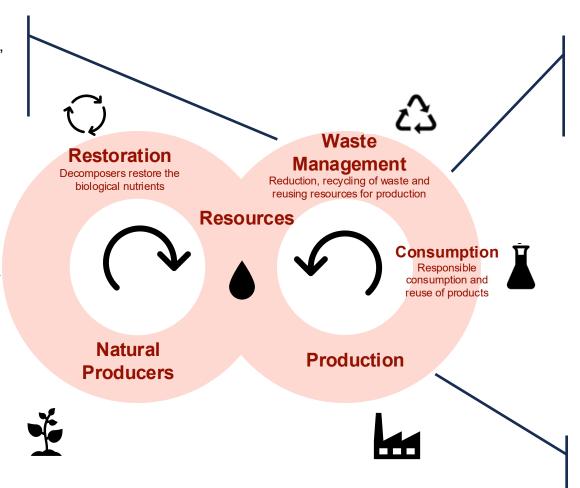
# **Data set for LIFE CYCLE ASSESSMENT**



| Life Cycle Process       | Essential Oils<br>(focus on Spike Lavender)                                              | Antibiotics                                                         |
|--------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Cultivation              | Land use, pesticide/fertilizer, water use                                                |                                                                     |
| Manufacturing            | = extraction Energy use for steam distillation, solvent, water consumption, waste output | Chemical synthesis data, energy use, by-product emissions           |
| Packaging                | Material types, energy for production                                                    | Material types, energy for production                               |
| Transport / Distribution | Emissions from farm to retailer                                                          | Cold chain data when applicable, emissions from factory to retailer |
| Use                      | Potential for runoff                                                                     | Partial metabolism                                                  |
| End-of-life              | Biodegradability                                                                         | Water treatment efficiency, persistence in the environment          |

# **CIRCULAR ECONOMY: Causal Loop Diagram**




#### **Repurposing Plant material**

(biomass): The aromatic plant matter used in distillation (flowers, leaves) can be reused to produce hydrosols or biofertilizers, extending its lifecycle.

# Regenerative agriculture

#### **Byproduct Valorization:**

Explore secondary uses of distillation waste: animal feed (safe biomass), mulch, herbal teas, or natural cosmetics.



#### Reusable Packaging:

Encourage glass bottle return schemes, deposit systems, or certified recyclable packaging within local distribution networks

Closed-Loop Extraction
Systems: Promote solvent-free distillation with water recovery and use of biomass waste for compost or bioenergy.

# **Measuring IMPACT of Essential Oils**



#### **Selected Performance Metrics:**



#### **Clinical & Health Impact**

- **1. Reduction in Antibiotic Usage**  $\rightarrow$  less resistance, main driver of AMR
- 2. Treatment Effectiveness → proven outcomes, credibility with doctors/patients

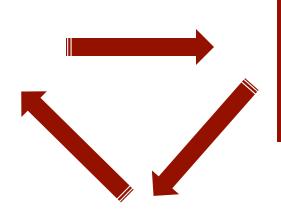


#### **Sustainability & Efficiency**

- **3. Carbon & Water Intensity** → responsible essential oil production
- **4. Cost per Treatment** → affordability across healthcare systems, key for scalability



#### **Growth & Adoption**


5. Scalability & Uptake  $\rightarrow$  Measures how widely the solution can be deployed and adopted

# **How These Metrics Support the Project**



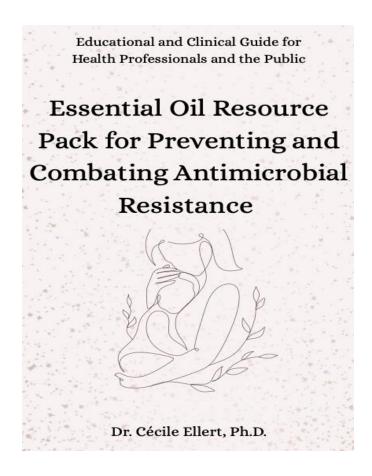
#### **Better Planning**

- LCAs reveal efficiency opportunities
- Cost analyses guide resource allocation
- Data-driven insights improve sustainability outcomes



#### Stakeholder Buy-in

- Reduced antibiotic usage shows credibility
- Proven treatment effectiveness builds trust with doctors & policymakers
- Evidence supports regulatory and public health alignment


#### **Implementation**

- Scalability and adoption metrics track real-world uptake
- Early warning signals if adoption lags
- Enables timely strategy adjustments for rollout success



# **Takeaway Brochure & Resource Hub**

- Easy overview of the protocol
- Access to sourcing links
- Implementation video
- For public & professionals
- Featured at the next NAHA conference in October 2025 (see more in the appendix)





# SOURCES / REFERENCES

#### **Sources**



#### AMR, a Global threat

- Antimicrobial Resistance (AMR) Facts Sheet Antimicrobial resistance
- UN General Assembly: <a href="https://www.who.int/news-room/events/detail/2024/09/26/default-calendar/un-general-assembly-high-level-meeting-on-antimicrobial-resistance-2024#:~:text=The%20second%20High%2DLevel%20Meeting,leading%20to%20illness%20and%20deaths.
- 2019 CDC report: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/?CDC AAref Val=https://www.cdc.gov/drugresistance/biggest-threats.html
- Surveillance and disease data for AMR: https://www.ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data

#### **Drugs and Water Pollution**

- Pharma's potential impact on water quality. Science Daily. https://www.sciencedaily.com/releases/2020/03/200325110904.htm
- AstraZeneca. (2020). Diagnosing current and future water risks facing the pharmaceutical sector. World Wide Fund for Nature.
- <a href="https://wwfint.awsassets.panda.org/downloads/case-study">https://wwfint.awsassets.panda.org/downloads/case-study</a> diagnosing water risks for the pharmaceutical sector 1.pdf
- Harvard Health Publishing. (2011). Drugs in water: <a href="https://www.health.harvard.edu/newsletter">https://www.health.harvard.edu/newsletter</a> article/drugs-in-the-water
- One Health. (2024). Understanding antibiotic resistance in water. Centers for Disease Control and Prevention: <a href="https://www.cdc.gov/one-health/php/stories/understanding-antibiotic-resistance-in-water.html">https://www.cdc.gov/one-health/php/stories/understanding-antibiotic-resistance-in-water.html</a>
- USGS. (2018). Pharmaceuticals in water. U.S. Geological Survey: <a href="https://www.usgs.gov/special-topics/water-science-school/science/pharmaceuticals-water">https://www.usgs.gov/special-topics/water-science-school/science/pharmaceuticals-water</a>
- PubMedCentral. (2021). Removal of pharmaceutical residues from water and wastewater using dielectric barrier discharge methods—A review: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916394/

#### **Antibacterial Essential Oils**

- Essential Oils in Combination and Their Antimicrobial Properties: <a href="https://www.mdpi.com/1420-3049/17/4/3989">https://www.mdpi.com/1420-3049/17/4/3989</a>
- In vitro antibacterial activity of some plant essential oils: <a href="https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/1472-6882-6-39">https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/1472-6882-6-39</a>
- Antimicrobial activity of some essential oils: <a href="https://www.mdpi.com/2305-6320/4/3/58">https://www.mdpi.com/2305-6320/4/3/58</a>
- Antimicrobial stewardship in wound care: <a href="https://www.researchgate.net/publication/343641607">https://www.researchgate.net/publication/343641607</a> Antimicrobial stewardship in wound care: <a href="https://www.researchgate.net/publication/">https://www.researchgate.net/publication/</a> Antimicrobial stewardship in wound care: <a href="https://www.researchgate.net/publication/">
- Future of wound care: https://www.researchgate.net/publication/314936758 Future of wound care
- Transparent Reporting for Essential oil and Aroma Therapeutic Studies: <a href="https://www.arqat.org/">https://www.arqat.org/</a>

#### **Sources**



#### **Antibacterial Essential Oils**

- Essential Oils in Combination and Their Antimicrobial Properties: https://www.mdpi.com/1420-3049/17/4/3989
- In vitro antibacterial activity of some plant essential oils: https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/1472-6882-6-39
- Antimicrobial activity of some essential oils: https://www.mdpi.com/2305-6320/4/3/58
- Antimicrobial stewardship in wound care: <a href="https://www.researchgate.net/publication/343641607">https://www.researchgate.net/publication/343641607</a> Antimicrobial stewardship in wound care: <a href="https://www.researchgate.net/publication/343641607">https://www.researchgate.net/publication/343641607</a> Antimicrobial stewardship in wound care:
- Future of wound care: <a href="https://www.researchgate.net/publication/314936758">https://www.researchgate.net/publication/314936758</a> Future of wound care
- Transparent Reporting for Essential oil and Aroma Therapeutic Studies: https://www.arqat.org/
- Effectiveness of aromatherapy for prevention or treatment of disease, medical or preclinical conditions, and injury: protocol for a systematic review and meta-analysis | Systematic Reviews | Full Text

#### **Potential Hazards**

American Lung Association <a href="https://www.medicalnewstoday.com/articles/326732">https://www.medicalnewstoday.com/articles/326732</a>

#### **Mitigation Strategies**

- Essential Oil-Based Bioherbicides: Human Health Risks Analysis: mdpi.com/1422-0067/22/17/9396
- Essentials of essential oils: <a href="https://academic.oup.com/ajhp/article-abstract/74/9/e153/5102762">https://academic.oup.com/ajhp/article-abstract/74/9/e153/5102762</a>
- Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being: <a href="https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1337785/full">https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2024.1337785/full</a>
- An Overview of the Potential Therapeutic Applications of Essential Oils: https://pmc.ncbi.nlm.nih.gov/articles/PMC7866131/
- Essential Oils and Health: https://pubmed.ncbi.nlm.nih.gov/32607090/

#### **Sources**



#### **Essential Oils Costs & benefits**

- <a href="https://www.who.int/indonesia/news/detail/20-08-2024-deaths-due-to-amr-estimated-to-reach-10-million-people-by-2050--ministry-of-health-and-who-launch-national-strategy">https://www.who.int/indonesia/news/detail/20-08-2024-deaths-due-to-amr-estimated-to-reach-10-million-people-by-2050--ministry-of-health-and-who-launch-national-strategy</a>
- Antimicrobial Resistance (AMR) Facts Sheet Antimicrobial resistance

#### Spike Lavender

- Lavender Production, Products, Markets, and Entertainment Farms
- Spike Lavender Essential Oil Organic French Lavandula Latifolia
- All About Spike Lavender | Pranarôm

#### Essential oils and the circular economy

- · Essential Oils and the Circular Bioeconomy.pdf
- Sustainable Practices in Essential Oil Production: From Farm to Bottle Triefta Aroma Nusantara | A Way to go Nature
- WHO (2024) AMR High-Level UN Meeting
- CDC (2019) Antibiotic Resistance Threats Report
- AstraZeneca & WWF (2020) Pharma Water Risks
- USGS (2018) Pharmaceuticals in Water
- BMC (2006) Antibacterial Activity of Plant Oils
- MDPI (2017) Essential Oils Antimicrobial Properties
- ResearchGate (2020) Antimicrobial Stewardship in Wound Care
- PubMed Central (2021) Removal of Pharma Residues
- Harvard Health (2011) Drugs in Water
- CDC One Health (2024) Antibiotic Resistance in Water



# **APPENDIX**

### Poster Presented at the NAHA conference October 2025



• Please use the QR code to open the brochure



 About the NAHA conference https://conference.naha.org/

